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Abstract 9 

Ecological patterns are often fundamentally chronological. However, generalization of 10 

data is necessarily accompanied by a loss of detail or resolution. Temporal data in particular 11 

contains information not only in data values but in the temporal structure, which is lost when 12 

these values are aggregated to provide point estimates. Dynamic Time Warping (DTW) is a time 13 

series comparison method that is capable of efficiently comparing series despite temporal offsets 14 

that confound other methods. The DTW method is both efficient and remarkably flexible, 15 

capable of efficiently matching not only time series but any sequentially structured dataset, 16 

which has made it a popular technique in machine learning, artificial intelligence, and big data 17 

analytical tasks. DTW is rarely used in ecology despite the ubiquity of temporally structured 18 

data. As technological advances have increased the richness of small-scale ecological data, DTW 19 

may be an attractive analysis technique because it is able to utilize the additional information 20 

contained in the temporal structure of many ecological datasets. In this study we use an example 21 

dataset of high-resolution fish movement records obtained from otolith microchemistry to 22 

compare traditional analysis techniques with DTW clustering. Our results suggest that DTW is 23 

capable of detecting subtle behavioral patterns within otolith datasets which traditional data 24 
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aggregation techniques cannot. These results provide evidence that the DTW method may be 25 

useful across many of the temporal data types commonly collected in ecology, as well other 26 

sequentially ordered “pseudo time series” data such as classification of species by shape. 27 

 28 

Keywords: classification, cluster analysis, data generalization, DTW, dynamic time warping, 29 

otolith chemistry, time series 30 

 31 

Introduction 32 

The study of ecology is fundamentally chronological, and the challenges ecologists face 33 

with the collection and analysis of their data often reflects this temporal nature (Wolkovich et al. 34 

2014). Populations rise and fall over years. Climate, as well as the rates of predation, parasitism, 35 

and competition vary across time, affecting behavior, survival, and reproduction of populations. 36 

Analyzing and modeling this data often requires translating data collected at small scales into 37 

meaningful metrics that can explain larger phenomenon. This translation, however, inevitably 38 

results in loss of information though loss of detail and specificity (Levin 1992). 39 

Levin (1992) argues convincingly that simplifying data from the individual to the 40 

ecosystem scale should be done with the goal of thoughtfully preserving “minimal sufficient 41 

detail” to inform models at larger scales. However, as technology drives increases in the volume 42 

and richness of data at the individual and local scale (Hampton et al. 2009, Laurance et al. 2016), 43 

it is reasonable to assume that small-scale data may now contain more meaningful data. Analyses 44 

that better summarize information-rich data could increase the meaning of aggregated data.  45 

Recent advances in time series analysis techniques may be an example of just such a technique 46 

(Aghabozorgi et al. 2015). Time series data contains information not just in the values of the 47 

data, but in the order of those values (Chatfield 2003, Cressie and Wikle 2011). Many analysis 48 
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techniques collapse these data into discrete time-points, or overall descriptive statistics, in the 49 

process removing temporal structure that may be more useful than we realize. New time series 50 

analysis tools that have gained prominence in other fields may allow more nuanced treatment of 51 

time series data in ecology, decreasing the loss of information in time series data due to 52 

aggregation.  53 

 One of the most popular time series techniques is Dynamic Time Warping (DTW). DTW 54 

distance is a distance measure (similar to the familiar Euclidian or Mahalanobis distance 55 

measures) which describes the similarity of two time series, or any dataset which can be 56 

expressed sequentially. It was first developed as a method to match sounds in speech recognition, 57 

where the speed and accent of speakers can vary despite the word or phrase being the same, 58 

creating phase shifts that are difficult to match using most distance metrics (Sakoe and Chiba 59 

1978, Myers and Rabiner 1981). DTW excels at matching similar time series which vary 60 

temporally and has been shown to be fast, and highly efficient for classification (Al-Naymat et 61 

al. 2009, Rakthanmanon et al. 2012). The technique is flexible and can be applied using existing 62 

clustering and classification methods (Mueen and Keogh 2016, Sarda-Espinosa 2017).  63 

The DTW distance describes the Euclidean distance between two time series, after first 64 

“warping” them into alignment. An accessible and concise explanation of the mathematical basis 65 

and statistical applications of the technique is available in Ratanamahatana and Keogh (2004). 66 

Briefly, DTW finds the optimal path across the matrix created by matching each point in a time 67 

series with each point of a comparison series (Figure 1A). This path is found using dynamic 68 

programming to minimize a cost function for each sequential step across the matrix, essentially 69 

finding the path which matches the most similar points in each series. In the case of two identical 70 

time series, the least cost path would be a perfect diagonal. For misaligned series, the algorithm 71 
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matches each point in the two time series with a one-to-many approach, warping the temporal 72 

dimension to match the two series (Figure 1B). This warping technique allows time series to be 73 

compared after correction for temporal differences that would otherwise skew a Euclidean 74 

distance measure.  75 

Despite the increasing popularity of DTW in big-data mining (Keogh and Pazzani 2000, 76 

Sakurai et al. 2015), artificial intelligence & robotics (Xu et al. 2014, Cheng et al. 2015), 77 

economics (Lee et al. 2012, Wang et al. 2012), healthcare (Ortiz et al. 2016), and speech 78 

recognition (Pi-Yun Chen et al. 2015) these techniques have only been applied in a few cases to 79 

ecological data (Debeljak et al. 2010, Cope and Remagnino 2012, Stathopoulos et al. 2014, Tan 80 

et al. 2015, Jouary et al. 2016, Baumann et al. 2017, Weideman et al. 2017).  81 

DTW may be useful for many types of ecological data because much of the data that 82 

ecologists collect has a temporal component; for example, spatial location data of tagged 83 

animals, mark-recapture data, trends in population density, and the timing of spring leaf-out, all 84 

are either inherently temporal or could be thought of as a time series. In fact, the use of DTW to 85 

analyze “pseudo time series,” sequentially ordered data which is not temporal but can be thought 86 

of as such for the sake of analysis, has potentially wide application in ecology. Identification of 87 

plant or fish species based on shape, or animal movement patterns, are three examples in the 88 

literature (Ueno et al. 2006, Cope and Remagnino 2012, Jouary et al. 2016). Even genetics data 89 

can be coerced into a time series format for use with time series methods (Rakthanmanon et al. 90 

2012). In many of these cases it is useful to determine the similarity or difference between the 91 

structure of data; for example, to classify streams by the characteristics of their hydrograph, or to 92 

track the timing of phenological events across decades. Time series clustering tools like DTW 93 

provide methods which can efficiently cluster similar time series using all the information 94 
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contained in the chronological structure of the data, avoiding some of the problems associated 95 

with data aggregation. 96 

One example of temporally structured data for which DTW may provide analytical 97 

advantages is the life-time chemical records obtained from fish otoliths (or ear stones). Over the 98 

same period that time series clustering methods have matured, the microchemical analysis of fish 99 

otoliths has taken similarly large strides as an ecological tool, becoming an example of a 100 

dramatic increase in data richness at the individual scale (Campana 2005, Secor 2010, Walther 101 

2019). With calcium carbonate rings laid down daily, the otolith is a natural temporal record of 102 

the environment and life-history of a fish (Campana and Neilson 1985). Otoliths record ambient 103 

chemistry which can be used to reconstruct an individual’s movements, life-history strategies, 104 

and environmental conditions through the life of a fish with remarkable precision (Kennedy et al. 105 

1997, 2002, Campana and Thorrold 2001, Hamann and Kennedy 2012, Limburg et al. 2013). 106 

Studies now often including multiple chemical and isotopic tracers, each able to reconstruct 107 

different multiple facets of a fish’s life-history (Walther and Limburg 2012, Hegg et al. 2018). 108 

These new techniques create information-rich, time series data of a fish from birth to death 109 

(Figure 2A). 110 

While the resolution of data extracted from otoliths has increased dramatically, analysis 111 

techniques have not taken advantage of the increased information density of high-resolution time 112 

series datasets. In most cases data from periods of interest in the fish’s life is aggregated, creating 113 

a chemical index which can be analyzed as a discrete value, or a vector of values in the 114 

multivariate case (Barnett-Johnson et al. 2010, Hegg et al. 2013a, Garcez et al. 2014, Hegg et al. 115 

2018). While this is a valid approach, it risks ignoring or obscuring valuable information 116 
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contained in the time series structure itself whose shape is affected by growth, movement, and 117 

ontogeny.  118 

In this paper, we provide an example of how DTW can be used to determine natal origin 119 

and life-history from a large dataset of known-origin juvenile Chinook salmon otolith transect 120 

data. We demonstrate the ability of DTW to cluster fish using univariate and multivariate 121 

87Sr/86Sr data. Next, we compare these results to a more conventional, model-based discriminate 122 

function analysis using aggregated multivariate data, and we demonstrate how the two 123 

techniques could be paired to potentially improve location discrimination. We then present the 124 

use of nearest-neighbor classification to extend DTW clustering to classify unknown fish. 125 

Finally, we discuss the utility of DTW methods in ecology more broadly given our results.  126 

Methods 127 

Study Species 128 

Snake River fall Chinook salmon are a threatened population of fall-spawning 129 

Oncorhynchus tshawytscha in the Snake River of Idaho, a major tributary to the Columbia River 130 

in the northwestern United States (Figure 3). The population is notable for a recent shift in 131 

juvenile life-history strategy which recent research suggests is hereditary and an example of 132 

contemporary life-history evolution (Williams et al. 2008, Waples et al. 2017). These changes 133 

are thought to be driven by anthropogenic changes related to ten hydropower dams which have 134 

blocked the majority of historical spawning habitat and created significant changes in the 135 

hydrograph and river conditions throughout their current range (Connor et al. 2005, Hegg et al. 136 

2013a, Connor et al. 2016).  137 
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The geology of the major spawning tributaries in this watershed is diverse both in age 138 

and rock type, creating significant differences in water chemistry between the major spawning 139 

areas (Hegg et al. 2013b). Ongoing water sampling throughout the basin has shown that 87Sr/86Sr 140 

signatures in the four main spawning areas of the basin are distinct, and that discriminate 141 

function analysis using 87Sr/86Sr can be used to determine the locations of juvenile and adult fish 142 

using otolith chemistry (Hegg et al. 2013a, 2018).  143 

Otolith Collection and Analysis 144 

The data used in this study consists of otoliths collected from known-origin, juvenile fall 145 

Chinook salmon from throughout their range in the Snake River basin as part of a prior otolith 146 

study (Hegg et al. 2018). Juveniles were collected at three locations from 2009 to 2014 (n=376) 147 

as part of population surveys conducted across the spawning areas in the Snake, Grande Ronde 148 

and Clearwater Rivers by United States Fish and Wildlife Service, Nez Perce Tribe Department 149 

of Fisheries Resource Management, and USGS. Samples were also obtained from the two 150 

hatcheries producing Fall Chinook in the basin, Lyons Ferry Hatchery and the Nez Perce Tribal 151 

Hatchery. Some fish were tagged with passive integrated transponder (PIT) tags and released, 152 

then recaptured weeks later when their tag was detected at Lower Granite Dam, the first dam fish 153 

encounter on their path downstream.  154 

Otolith samples were collected and processed using established procedures for otolith 155 

analysis (Secor et al. 1992, Hegg et al. 2013a). Detailed methods for this dataset, including laser 156 

ablation and ICP-MS information, are available in Hegg et al. (2018) . Continuous chemical 157 

transects from the core (birth) to the edge (death) were collected from each otolith, creating a 158 

sequential chemical record throughout the life of the fish (Figure 2A and B). This was done 159 

using using a New Wave UP-213 laser ablation sampling system. This system was coupled with 160 
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a Thermo Scientific Neptune multi-collector inductively coupled plasma mass-spectrometer 161 

(ICP-MS) for 87Sr/86Sr ratio. The ablation system was coupled with a Thermo Scientific 162 

Element2 ICP-MS to measure elemental concentrations of calcium (43Ca), strontium (86Sr), 163 

barium (138Ba), Magnesium (25Mg), and Manganese (55Mn). Elemental measurements were 164 

calculated as ratios to calcium and expressed as mm/mol following Hegg et al. (2018).  165 

 Multivariate Discriminate Function Classification 166 

A model-based discriminant function was created to classify fish to known location. The 167 

goal was to develop a robust classification which could than later be applied to unknown adult 168 

fish to inform ecology and management of the population.  169 

Within our dataset, juveniles were assigned to a known origin based on the location of 170 

capture. Juveniles which were captured and sacrificed during beach seine sampling were 171 

assigned to the river reach in which they were captured; the Upper Snake River (USK), the 172 

Lower Snake River (USK), the Clearwater River (CWS), or the Grande Ronde River (GR). Fish 173 

that were PIT tagged and recaptured at Lower Granite Dam were assigned a second known 174 

location in Lower Granite Reservoir (LGR). Therefore, it was possible for a fish to have both a 175 

known natal location and a known downstream location. Some fish were caught in the dam 176 

forebay as a part of prior studies and their natal location was not known, although their migration 177 

timing suggested Clearwater River origin. These fish were assigned only a known downstream 178 

location of LGR. Juveniles obtained from Lyons Ferry Hatchery (LFH) and Nez Perce Tribal 179 

Hatchery (NPTH) were assigned to these natal locations respectively. 180 

We defined the natal signature as the average of the chemistry between 300µm and 181 

400µm from the core of the otolith, creating a five-element vector of chemical signatures for 182 

each fish. This was based on prior research showing this to be the beginning of stable juvenile 183 
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signatures (Hegg et al. 2018). Fish arriving at Lower Granite Dam can be moving downstream 184 

quickly and may have only recently equilibrated. Therefore, we averaged the signatures from 185 

only the outer 50µm from the edge to obtain the downstream signature. Fish captured at LGR 186 

with a 87Sr/86Sr signature far removed from that of LGR were assumed to be fast moving 187 

migrants, fish moving too fast to have equilibrated to the surrounding water. These were 188 

removed to maintain a consistent training set for the discriminant function. 189 

Classifying fish to location was done using a model-based discriminant function using 190 

87Sr/86Sr, Sr/Ca, Ba/Ca, Mn/Ca, and Mg/Ca as independent variables and known location as the 191 

classifier. We used the {mclust} package (version 5.2) for R to build a model based discriminant 192 

function (Fraley and Raftery 2007, Scrucca et al. 2016). The dataset was randomly split into a 193 

training set (80%) and test set (20%), with the training-set used to construct the discriminate 194 

function. Related river reaches were combined successively until an acceptable misclassification 195 

rate was achieved. The final discriminate function was then applied to the test-set to quantify its 196 

performance on unknown data.  197 

Dynamic Time Warping Cluster Analysis 198 

Time series clustering using DTW distance was used to identify groups of similar fish 199 

based on the shape of their otolith transects. The DTW algorithm is extremely sensitive to 200 

variation in mean, requiring all time series to be normalized (Keogh and Kasetty 2002, 201 

Rakthanmanon et al. 2012). In the case of fish life-history transects this normalization can be 202 

problematic, as the absolute mean of the 87Sr/86Sr ratio is meaningful as a marker of fish location, 203 

and once normalized to a mean of zero and unit variance it is possible for the shape of two 204 

otolith transects from different rivers to look alike, and thus cluster together despite being 205 

meaningfully different.  206 
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To remove the location ambiguity created by z-normalization we used a two-step 207 

clustering process to partition the transects by mean, and then sub-cluster by DTW distance. The 208 

mean of each 87Sr/86Sr transect was calculated, means data was scaled, then clustered using 209 

model-based clustering in the Mclust package for R. Initial clustering was performed with the 210 

intention of finding the minimum number of clusters which cleanly separated the known groups. 211 

The clusters obtained from Mclust where then sub-clustered using DTW distance on both 212 

univariate 87Sr/86Sr and multivariate data including the elemental ratios used in the discriminate 213 

function classification above.  214 

Prior to DTW clustering, a centered, 60-point, rolling average was used to smooth 215 

87Sr/86Sr  transects. A 10-point rolling average was used to smooth elemental data, as the longer 216 

integration time during collection of this data results in smoother data. Transects were then re-217 

interpolated to a length of 200 cells, which allows faster calculation through the implementation 218 

of lower bounds without a loss of the ability to accurately match time series (Ratanamahatana 219 

and Keogh 2004, Al-Naymat et al. 2009). This length was used as a rounded approximation of 220 

the mean length of series in the dataset. The mean length of transects was 173 cells, with a 221 

maximum length of 422, a minimum of 61 and a standard deviation of 61 cells. A comparison of 222 

selected data before and after interpolation is included in Appendix A.  223 

Clustering was performed on the univariate and multivariate transects using the 224 

{dtwclust} package (Sarda-Espinosa 2017) using agglomerative hierarchical clustering {hclust} 225 

method in R with Wards distance. A 5% Sakoe-Chiba window was employed to decrease 226 

processing effort and limit potentially erroneous warping (Sakoe and Chiba 1978, 227 

Ratanamahatana and Keogh 2004, Al-Naymat et al. 2009). The Sakoe-Chiba window limits the 228 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.19.440490doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440490
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

amount of deviation from the diagonal when determining the warping path between two time 229 

series (Figure 1B). Otolith transects were z-normalized prior to analysis.  230 

Clustering was exploratory, with a goal to cut the dendrogram of each group at a location 231 

which minimized the number of clusters while maintaining clusters which were easily 232 

interpretable based on the known-origin of the fish within each cluster. Window size was varied 233 

from 1% to 100% after the optimal number of groups was found to determine if adjusting the 234 

Sakoe-Chiba window (Sakoe and Chiba 1978) affected the stability of the results.  235 

The same clustering approach was repeated for univariate data using the Euclidian 236 

distance measure. This was done to test whether DTW was a superior distance metric over the 237 

more traditional Euclidean distance which does not take into account temporal warping. 238 

Euclidian distance was not performed on the multivariate data as there are no packages which 239 

implement multivariate Euclidean distance for time series clustering.  240 

Combining DTW with Discriminate Function Analysis 241 

In one case the discriminant function was unable to separate two groups of fish from 242 

known locations, the USK and LSK, allowing us to test the ability of DTW to separate these 243 

indistinguishable groups. We applied hierarchical clustering to the training set data from these 244 

confounded groups, reserving the test-set data to test the robustness of the grouping using 245 

nearest-neighbor classification. For the clustering step we used a 5% Sakoe-Chiba window and 246 

Keogh lower bounds. The effect of window size was tested qualitatively by varying the window 247 

from 1% to 100% to test the stability of the clustering results. We cut the dendrogram to create 248 

three clusters based on the results of the overall DTW clustering. We then used this cluster 249 

solution to predict the cluster membership of the test-set otoliths from these confounded groups 250 

using 1-nearest-neighbor classification, to test the stability of these cluster results to unknown 251 
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data. Comparison to known water chemistry from Hegg et al. (2018) was used to evaluate the 252 

veracity of this group membership.  253 

Results 254 

Multivariate Discriminate Function Analysis 255 

Initial data exploration indicated that the LGR group, as expected, contained a number of 256 

juvenile fish whose signatures had not equilibrated and instead reflected signatures of upstream 257 

habitats (n=22). Additionally, the LSK group contained one fish caught in the Lower Snake 258 

River and later at LGR which exhibited a very high, Clearwater River signature. These fish were 259 

removed to provide a robust training set, under the assumption that adult fish would exhibit a 260 

clear signature in these locations, having had time to chemically equilibrate.  261 

Additionally, a group of anomalous life-history transects were identified in the CWS 262 

group which did not appear to conform to the known signatures which a Clearwater origin fish 263 

would experience, nor did they match the expected patterns or signatures seen in NPTH fish. All 264 

of these fish were captured late in the year and could potentially be unmarked hatchery juveniles, 265 

erroneously identified Spring Chinook from upriver populations, or an unknown source. To 266 

avoid biasing our CWS training set these fish were excluded (n=25).  267 

There was significant overlap in the 87Sr/86Sr signatures between the USK and LSK 268 

groups. Many LSK fish appeared, subjectively, to have originated in the USK and moved very 269 

early to the LSK downstream. Evidence of this type of early movement has been observed in the 270 

population (Ken Tiffan, USGS, unpublished data). However, without evidence to clearly identify 271 

these potentially early-moving juveniles they were kept within their known-origin groupings.  272 
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Model based clustering resulted in a model with variable, ellipsoidal and diagonal 273 

variance structures for each group. The initial classification attempt resulted in large 274 

misclassification errors between the LSK and USK groups. The USK and LSK groups were 275 

subsequently combined and the classification was run again. This final training set classification 276 

resulted in an absolute training error of 3.6% (n=298), with a 10-fold cross-validation error rate 277 

of 12.8% (SE = 3.3%). Classification of the test set (n=74) resulted in an overall classification 278 

error rate of 12.2%. (Table 1) 279 

Dynamic Time Warping Cluster Analysis 280 

Initial model-based clustering on the mean of each transect resulted in three clearly 281 

defined groupings in the dendrogram which largely corresponded to the three major river 282 

systems in the basin (Table 2). The first cluster was made up largely of transects from the 283 

Clearwater River (n=101) with high mean 87Sr/86Sr and is referred to as the Clearwater cluster. 284 

Seventeen samples in this group were from other locations, the majority of which were of 285 

unknown origin. The second cluster, the Snake River cluster, was a mixed cluster made up of 286 

fish from the Upper and Lower Snake Rivers, NPTH and LFH hatcheries with intermediate mean 287 

87Sr/86Sr transects, The third group was made up entirely of fish from the Grande Ronde River 288 

with low 87Sr/86Sr values. 289 

Univariate DTW Sub-clustering 290 

Univariate hierarchical DTW sub-clustering of juvenile 87Sr/86Sr transects in the 291 

Clearwater cluster separated into three clusters (Figure 4A, Table 2). The first cluster was made 292 

up of 83 fish with a steeply ascending 87Sr/86Sr profile consistent with the transition from 293 

maternal otolith signature to that of the Clearwater River. The second cluster separated 16 of the 294 

fish which were omitted from the discriminate function in the section above due to their 295 
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anomalous signature. The third cluster consisted of fish with an 87Sr/86Sr transect that quickly 296 

ascended toward the Clearwater and then descended toward the lower signature of the Snake 297 

River. The majority of cluster 3 fish were of unknown origin and captured in Lower Granite 298 

Reservoir. The remaining fish in cluster 3 exhibited a range of unique patterns.   299 

The DTW sub-clustering of the Grande Ronde cluster resulted in two groups, with cluster 300 

1 containing only a single sample with an anomalous, increasing 87Sr/86Sr transect (Figure 4B, 301 

Table 2). The second cluster contained the remainder of the samples, all of which exhibited a 302 

steeply declining 87Sr/86Sr signature followed by a small increase at the end of the transect.  303 

Univariate DTW sub-clustering of the Snake River cluster resulted in four distinct 304 

clusters (Figure 4C, Table 2). Subjectively cluster 1 contained fish with a signature beginning 305 

near the global marine signature (0.70918) and increasing toward the signature of the USK. This 306 

cluster was composed of a majority of fish from NPTH (16) and fish from the LSK which were 307 

subsequently captured in LGR (9). Cluster 2 appeared more mixed, with a combination of 308 

increasing signatures similar to cluster 1 and a large number of invariant signatures from LFH. 309 

The majority of cluster 2 fish were from LFH (18) but large numbers of fish from other locations 310 

as well, including LSK (13), NPTH (13), and LSK fish captured in LGR (11). Cluster 3 transects 311 

appeared to be dominated by a signature decreasing from the global marine signature toward the 312 

USK signature and was dominated by fish from USK (29). This cluster also included a large 313 

number of fish captured in the LSK reach (22). Cluster 4 appeared to separate a 87Sr/86Sr 314 

signature decreasing from the global marine signature before rising and crossing the global 315 

marine signature to end at the signature of the USK or LGR. The majority of fish in cluster 4 316 

were of USK origin, later captured in LGR (17) with a smaller number originating in the LSK 317 

(10).  318 
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Overall, the univariate DTW clustering results showed some ability to classify fish, 319 

though clusters were not unambiguous. Particularly in the Clearwater River, DTW was able to 320 

separate fish which had already been identified as having an anomalous signature (Cluster 2), 321 

and to distinguish fish with a likely origin in the Clearwater which were captured further 322 

downstream in LGR. Sub-clustering of the Snake River cluster showed some ability to separate 323 

hatchery fish (Clusters 1 and 2), and some ability to distinguish patterns in the 87Sr/86Sr transects 324 

which could distinguish fish originating in the USK and LSK despite their later downstream 325 

movement which confounded the discriminate function. Varying the size of the Sakoe-Chiba 326 

window had very little impact on the DTW results.  327 

Univariate sub-clustering of 87Sr/86Sr transects using Euclidean distance resulted in very 328 

similar clustering results and dendrograms to the DTW results. The most significant difference 329 

between the two distance metrics was the ordering of sub-clusters in the Clearwater River. The 330 

details of these results are not presented to avoid repetition.  331 

Multivariate DTW Sub-clustering 332 

Multivariate, hierarchical DTW sub-clustering resulted in more straightforward sub-333 

clustering results. Multivariate clustering excluded Mg/Ca ratio as a variable. This was done 334 

after determining that outliers within the Mg/Ca transects resulted in poor clustering results 335 

overall. The interpretability of clustering results improved markedly after removal of Mg/Ca 336 

from the dataset.  337 

Within the Clearwater River cluster, DTW identified four distinct cluster groups (Figure 338 

5A, Table 3). Cluster 1 was made up of a majority of fish of unknown natal origin captured in 339 

LGR (12) with a single fish from the CW group. Cluster 2 was made up of CW origin fish (20) 340 

with a sharply ascending 87Sr/86Sr transect similar to Clearwater sub-cluster 1in the univariate 341 
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case. Cluster 3 was made up of 15 samples with the anomalous transect shape which was 342 

excluded from the discriminate function and one fish from NPTH. The similarity the NPTH fish 343 

classified to the same group supports the idea that these are fish from NPTH which were 344 

captured unknowingly. Further, the fish in this cluster were all captured late in 2014 which 345 

increases the chances that hatchery juveniles would be included in sampling. The water in which 346 

fish are held at NPTH is mixed between well and river sources depending on conditions (Hegg et 347 

al. 2018), which could cause differences in the 87Sr/86Sr curves between cluster 4 and the known-348 

origin NPTH fish in cluster 2. Alternatively, the possibility of an unknown source cannot be 349 

eliminated.  350 

Sub-cluster 4 in the Clearwater River cluster contained fish predominantly of CW origin, 351 

with 2 fish of unknown natal origin, one fish of unknown origin captured in LGR, and 1 with 352 

LSK natal origin captured in LGR. The 87Sr/86Sr transects for Cluster 4 showed a similar sharply 353 

ascending pattern as Cluster 2. However, they were distinguished by an ascending pattern in 354 

Ba/Ca, Mn/Ca, and Sr/Ca, while Cluster 2 displayed a sharp peak in Ba/Ca and Sr/Ca. The 355 

reasons for the differences in the shape of the elemental ratio transects are unknown, but it is 356 

possible that this represents a meaningful difference in life-history despite the similarity in 357 

87Sr/86Sr profile.  358 

Sub-clustering of the Grande Ronde cluster using DTW resulted in three clusters. 359 

Clustering height was an order of magnitude lower than for the other groups, indicating that 360 

clusters were more closely related (Figure 5B). Sub-clusters 1 and 3 displayed very similar 361 

87Sr/86Sr transects but were distinguished by increasing Ba/Ca and Mn/Ca in sub-cluster 1 and a 362 

peak in Ba/Ca and Mn/Ca midway through the transect for Cluster 3. Cluster 2 was made up of a 363 

single fish which displayed a unique upward trending 87Sr/86Sr signature but similar elemental 364 
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ratio patterns to sub-cluster 3. All of the fish in the Grande Ronde clusters were captured in the 365 

GR (Table 3). 366 

Sub-clustering of the samples from the Snake River cluster using multivariate DTW 367 

resulted in 6 well-defined clusters. Cluster 1 displayed a descending pattern of 87Sr/86Sr ratios 368 

beginning near the global marine signature and declining toward the 87Sr/86Sr signature of the 369 

Upper Snake river before rising slightly toward the global marine signature near the end of the 370 

transect (Figure 5C). Elemental ratios showed an increasing trend in Ba/Ca and Mg/Ca, with a 371 

decreasing trend in Sr/Ca. The cluster contained a majority of fish with natal origins in LSK, 372 

with 38 captured in LSK and an additional 10 initially captured in LSK before being recaptured 373 

downstream in LGR. Fish from the USK made up the remainder of the known origin fish in this 374 

sub-cluster, with 24 captured in the USK and 6 initially captured in the USK before being 375 

recaptured in LGR.  376 

Snake River sub clusters 2 and 3 were comprised almost entirely of fish captured at each 377 

of the two hatcheries in the study (Figure 5C). Snake River sub-cluster 2 showed a largely flat 378 

87Sr/86Sr transect and highly variable elemental ratios. It was made up of 26 fish from LFH, 379 

comprising all of the fish from this hatchery included in the study. A single fish from NPTH was 380 

also included in this cluster. Sub-cluster 3 was similarly made up of hatchery origin fish, with 24 381 

fish from NPTH comprising the only members of the group.  382 

Snake River sub-clusters 4 and 5 were comprised mostly of downstream migrants 383 

captured in the LSK and USK respectively, later re-captured at LGR (Figure 5C, Table 3). Sub-384 

cluster 4 was dominated by fish originating in LSK before being recaptured at LGR (15). The 385 

87Sr/86Sr transects followed a pattern originating near the global marine signature and increasing 386 

toward the signature of the LSK river. Ba/Ca transects showed an increasing pattern, Mn/Ca 387 
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exhibited a peak at 150 cells in the re-interpolated data, and Sr/Ca showed an increasing pattern 388 

with a peak near the end of the transect. In contrast sub-cluster 5 was made up largely of fish 389 

originating in USK before being recaptured in LGR (22). This group displayed a pattern of 390 

87Sr/86Sr ratios decreasing below the global marine signature, toward the signature of the USK, 391 

before rising toward the LSK signature at the end of the transect. Elemental ratios in this group 392 

showed similar patterns to sub-cluster 4 in Mn/Ca but decreasing Sr/Ca and a late peak in Ba/Ca. 393 

Snake River sub-cluster 6 contained a majority of fish captured in LSK (18), with fish 394 

from LSK captured in LGR (4), USK captured in LGR (3), and NPTH (3) (Table 3). This group 395 

displayed an 87Sr/86Sr transect increasing from the global marine signature toward the LSK 396 

signature, with Ba/Ca and Mn/Ca increasing across the transect and Sr/Ca decreasing (Figure 397 

5C). 398 

Overall, multivariate DTW provided a clustering solution that clearly identified known 399 

life histories, while also identifying additional life-histories within the data which other methods 400 

did not. Within the Clearwater River DTW sub-cluster 1 contains fish captured at LGR with 401 

unknown natal-origin. The change from an increasing 87Sr/86Sr pattern consistent with the CW 402 

early in life, to a lower LGR signature later in life is evident (Figure 5A). These unknown- origin 403 

fish were collected by USGS in 2012 in the forbay of Lower Granite dam and the collection 404 

notes include, “Unknown origin. Likely from Clearwater but could be hatchery or natural,” based 405 

on the expected timing of outmigration from the Clearwater River. This provides evidence that 406 

the DTW algorithm is able to successfully match these fish to their natal location, despite the 407 

change in transect shape caused by movement into the lower 87Sr/86Sr signature of LGR. Further, 408 

three of these fish demonstrate movement into LGR at a much earlier point than the others 409 
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(Figure 5A), yet the time-warping nature of DTW and the similarity of their elemental ratios 410 

allows them to be clustered together.   411 

Snake River sub-clusters 1, 4, 5 and 6 support the finding from the multivariate DFA that 412 

USK and LSK fish are confounded due to early movement (Figure 5C). Each of these clusters 413 

87Sr/86Sr transects originate near the global marine signature in the maternally influenced region 414 

of the otolith (~0-150µm, Hegg et al. 2018). Transects them toward either the signature of the 415 

USK which is below the global marine signature (sub-cluster 1 and 5) or the USK and LGR 416 

which is largely above the global marine signature (clusters 4 and 6) during the natal period 417 

(~250-400µm , Hegg et al. 2018). The shape of the 87Sr/86Sr transect due to movement 418 

downstream to LGR is clearly visible in cluster 5, and the addition of elemental transects clearly 419 

delineates this cluster from a similar 87Sr/86Sr shape for fish originating in the LSK (cluster 4 and 420 

6). Sub-cluster 1, however, contains a majority of fish whose transects clearly end within a 421 

signature lower than the global marine signature which should indicate an origin in the USK. 422 

Despite this the majority of fish in this sub-cluster were captured in LSK. This indicates that 423 

these fish likely originated in the USK, moved downstream to the LSK, and were captured 424 

before their signatures had equilibrated to the LSK signature.  425 

Combining DTW with Discriminate Function Analysis 426 

Multivariate hierarchical DTW clustering of the confounded USK/LSK samples in the 427 

discriminate function training-set was done to test the ability of DTW to separate the confounded 428 

group. This clustering of the confounded USK/LSK group resulted in three clear clusters (Figure 429 

6A and B). The first cluster contained fish originating in LSK (83%) with a shape similar to 430 

cluster 6 in the multivariate sub-clustering above. The second cluster contained a mixture of fish 431 

captured in the LSK (51%) and USK (45%), but with an 87Sr/86Sr shape similar to Snake River 432 
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multivariate sub-cluster 1 above. The third cluster contained downstream migrants recaptured in 433 

LGR after being initially captured in the USK (44%)  and LSK (41%) before being recaptured in 434 

LGR. The dendrogram did not provide simple separation of this downstream migrant group into 435 

LSK-LGR and USK-LGR clusters. This result indicated the ability of DTW to separate LSK fish 436 

from USK fish, as well as fish from each natal region captured downstream at LGR , based on 437 

the different transect shape produced in each natal river. Sakoe-Chiba window width did not 438 

have a large effect on clustering results.  439 

Testing this classification using 1-nearest neighbor to assign group membership resulted 440 

in the majority of the test set being assigned to the second cluster (Figure 6C and D). Cluster one 441 

contained three fish, one captured in LSK and two downstream migrants captured in LSK and 442 

USK respectively and recaptured in LGR. Cluster 2 contained nine fish captured in LSK, three 443 

downstream migrants originating in LSK and recaptured in LGR, one fish captured in USK, and 444 

one downstream migrant from USK captured in LGR. Cluster 3 was made up entirely of 445 

downstream migrants with three fish originating in LSK and five originating in USK before 446 

being captured in LGR.  447 

Comparison of the cluster transects to the range of water 87Sr/86Sr signatures collected 448 

from the USK and LSK reaches supports the contention that clusters 1 and 2 separate fish by 449 

their true natal river reach (Figure 6). Cluster 1 mostly contains fish with a 87Sr/86Sr signature 450 

reflective of the LSK in the natal region between ~250µm - 450µm from the otolith core in both 451 

the training and test set, and most were captured in the LSK reach (Figure 6) Cluster 2 shows a 452 

signature below the global marine value, reflective of the USK reach water samples, during the 453 

natal period (~250µm - 450µm). This cluster is split between fish captured in the USK and LSK, 454 

despite the samples having a consistent shape. This similarity in transect shape provides 455 
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additional evidence that early downstream movement is confounding the 87Sr/86Sr signatures of 456 

juveniles captured in the LSK reach. Cluster 3 is made up of a mix of fish from both LSK and 457 

USK natal origins which subsequently display an increasing signature consistent with the LSK 458 

water samples prior to capture, consistent with their known downstream migration.  459 

The test-set results indicate that the clusters are robust to transect shape, with test-set 460 

transects largely mirroring the 87Sr/86Sr transect shapes from the training set. Few test-set fish 461 

were assigned to cluster 1, making evaluation difficult. Cluster 2 appeared to robustly contain 462 

fish with a transect shape indicating USK natal origin. Cluster 3 again contained only 463 

downstream migrants captured in LGR, indicating that this cluster was robust in identifying the 464 

downstream migrant life-history.  465 

Discussion 466 

Finding analytical methods that best “extract and abstract those fine-scale features that 467 

have relevance…in other scales,” is particularly important  in ecology (Levin 1992). Our results 468 

indicate that DTW clustering, leveraging the structured nature of time series data, can distinguish 469 

important groupings in otolith life-history data. The ability of DTW to efficiently use the 470 

additional richness in time series datasets, in effect extracting important fine scale features 471 

without aggregation data loss, may be useful for a variety of other ecological datasets as well.  472 

DTW was very sensitive to life-history differences recorded in otolith transects. 473 

Univariate 87Sr/86Sr data was capable of classifying fish to location in ways broadly comparable 474 

to the traditional discriminant function technique using multivariate chemical signatures. Further, 475 

DTW identified additional life-history patterns that were not apparent in the multivariate 476 

discriminate function. The classification of two clearly different life-histories within the 477 
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Clearwater River group, including a life-history which were subjectively identified as different 478 

and held out of the discriminate functions analysis, was particularly interesting (Cluster 2, Figure 479 

4A). This indicates that the use of otolith transect shape may provide a more robust, data-480 

centered, method to identify outlying groups rather than simply relying on expert opinion.  481 

However, univariate DTW clustering was largely unable to reliably distinguish hatchery 482 

fish in the Snake River group, mixing NPTH samples with LSK samples due to a similarity in 483 

shape, and clustering LFH fish throughout the remaining clusters (Figure 4C). Further, univariate 484 

DTW clustering did not perform differently than clustering based on Euclidian distance, which is 485 

somewhat surprising. The outmigration timing of juvenile Fall Chinook varies significantly both 486 

year-to-year and between individuals within a natal reach (Connor et al. 2005, 2013, Tiffan and 487 

Connor 2012). This variation in timing would be expected to negatively affect the Euclidean 488 

distance measure. Standardizing the length of each time series and clustering first on the mean 489 

may have improved the similarity in shape, or temporal warping may be low enough to make 490 

Euclidean distance a viable measure in this population. However, in more complex matching 491 

tasks where much more variation and complexity is the norm, such as otolith data of adult fish or 492 

searching for specific movements within a larger otolith transect, it is likely that the temporal 493 

flexibility of DTW would be superior. 494 

Multivariate DTW clustering was much more successful and sensitive in classifying fish 495 

life-history. In the Snake River group multivariate DTW was able to cluster hatchery fish from 496 

NPTH and LFH with a high degree of precision (Clusters 2 and 3, Figure 5C). Further, despite 497 

the confounding effect of downstream movement DTW appeared to separate fish by USK and 498 

LSK natal origin with a high degree of specificity to transect shape (Clusters 1 and 4, Figure 5C). 499 

Further, DTW was able to distinguish downstream movement from each of these natal locations 500 
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into LGR and cluster them separately based largely on differences on differences in the shape of 501 

trace-element transects between the upper river and LGR (Clusters 5 and 6, Figure 5C).  502 

The ability of DTW to distinguish more subtle life-history differences is also very 503 

interesting. Both in the Clearwater and the Grande Ronde groups DTW identified clusters which 504 

appeared subjectively similar based on 87Sr/86Sr, the primary signature used to infer downstream 505 

movement. But underlying differences in the shape of the trace-element transects resulted in 506 

these fish being clustered separately. In the case of the Clearwater River group these clusters 507 

were relatively far removed on the dendrogram (Clusters 2 and 4, Figure 5A), while in the 508 

Grande Ronde group they were more closely related (Clusters 1 and 3, Figure 5B).  509 

Trace-elements in the otolith vary not only in response to differences in concentration in 510 

the surrounding water, but also in response to differences in temperature, growth rate, and other 511 

metabolic processes (Campana 1999, Walther and Limburg 2012, Limburg et al. 2018). This 512 

indicates that while the 87Sr/86Sr transect may not show differences in life-history, the transect 513 

shape of other trace elements may point toward important differences in the life-history or 514 

spatio-temporal interaction with the surrounding environment in some sub-groups of fish with 515 

otherwise similar downstream movement patterns.  516 

The results of model-based discriminate function analysis show that the traditional 517 

approach, aggregating data into a mean from the natal period on the otolith, is effective (Table 518 

1). However, the inability of the multivariate discriminate function to discriminate juveniles from 519 

the USK and LSK reaches of the Snake River provides an interesting example of the loss of 520 

information due to aggregation.  521 

The water signatures between the USK and LSK reaches are significantly different over 522 

multiple years of sampling (Hegg et al. 2013a, 2018). In this case, early moving fish may be 523 
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identified as LSK when, in fact, they are recent migrants from the USK reach whose chemistry 524 

has not equilibrated, or whose natal period does not match the expected 250-450µm location on 525 

the otolith due to variation in growth rate. Aggregating this data into a mean value incorporates 526 

these erroneous signals and ignores information contained in the temporal structure of the otolith 527 

data. Multivariate DTW is able to take the temporal dimension of this data into account, in a 528 

quantitative way, to separate the confounded LSK/USK groups (Figure 5C). The fact that natal 529 

signatures within each DTW group match the expected water chemistry of the USK and LSK 530 

reaches (Figure 6) provides strong evidence of the usefulness of the DTW method. These results 531 

indicate that DTW incorporates the fish movement, growth, and chemical data in the otolith to 532 

uncover meaningful associations in the data that traditional methods cannot.  533 

 The advantages of DTW as an analytical tool might be most apparent when combined 534 

with existing analysis techniques. For the data presented here, discriminant function analysis 535 

excels at pinpointing fish location based on the highly accurate chemical means that are 536 

aggregated from the natal signature. However, in the case of the confounded USK/LSK samples, 537 

using the temporal structure of the otolith data through DTW allows this problem to be resolved 538 

(Figure 6).  539 

The possibilities of DTW extend beyond the methods presented here. While our analysis 540 

is limited to clustering short time series with equal lengths, DTW is capable of more flexible 541 

pattern matching. For example, by relaxing the constraint that the time series be of the same 542 

length it is possible to search for short, prototype time series within longer series (Tormene et al. 543 

2009, Rakthanmanon et al. 2012). This could be used to find specific short-term fish behaviors, 544 

perhaps transitions between specific rivers, within the longer transects of adult fish. In other 545 

contexts, this could identify specific hydrological events within many years of hydrograph data, 546 
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or specific patterns of phenology across years or across a landscape. This “open-ended” method 547 

has been used successfully in several examples of extremely large datasets (Tormene et al. 2009, 548 

Rakthanmanon et al. 2012). The method is also easily applied to data that is not strictly temporal 549 

but can be sequentially ordered, for species identification by shape or identification of movement 550 

patterns (Ueno et al. 2006, Cope and Remagnino 2012, Jouary et al. 2016). Also, where good 551 

training data exist DTW combined with nearest-neighbor classification has been shown to be a 552 

robust and accurate classification method (Kate 2015). Further, DTW can be applied to 553 

multivariate time series, though careful pre-processing is required (Mueen and Keogh 2016). 554 

Despite the advances in DTW methods, and demonstrated utility in other fields, ecology 555 

has not embraced the technique. These methods are increasingly easy to utilize, with DTW 556 

packages available in multiple popular platforms including R, Python, Java and SAS (Leonard 557 

and Wolfe 2001, Salvador and Chan 2007, Albanese and Visintainer 2012, Gulzar 2015). 558 

Analysis of ecological data is always a balance between detail and parsimony, and often 559 

temporal in nature. DTW provides an additional tool for ecologists to maximize the information 560 

available to answer ecological questions by taking advantage of the information contained in 561 

sequentially structured data.  562 
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Tables 571 

Table 1 – Classification accuracy of discriminate function training set 572 

 573 

  Observed 
  CWS CRB LFH LGR NPTH USK/LSK 

Pr
ed

ic
te

d  

CWS 64 0 0 0 0 0 

CRB 0 21 0 0 0 0 

LFH 0 0 19 0 2 0 

LGR 2 0 0 60 0 9 

NPTH 2 0 2 0 21 5 

USK 0 0 0 2 1 92 

 574 

 575 
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Table 2 – Results of two-level clustering of known-origin juvenile fish using univariate DTW distance. Fish were first 576 
clustered by the mean 87Sr/86Sr of the entire transect using k-means, resulting in three broad clusters corresponding to the river of 577 
origin (Clearwater River, Snake River, and Grande Ronde River). These clusters were sub-clustered using hierarchical clustering and 578 
dynamic time warping distance on the 87Sr/86Sr transect for each otolith.  Sample size in each sub-cluster is shown, with the 579 
percentage of each known-origin group shown in parentheses. 580 
 581 

 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 
 590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 

 606 
  607 

 Clusters of Transect Mean 
 Clearwater R.  Snake R.  Grande Ronde R. 
DTW sub-cluster 1 2 3  1 2 3 4  1 2 

CW 79 
(78.2%) 

16 
(15.8%) 6 (5.9%)  - - - -  - - 

LSK - - -  7 
(11.9%) 

13 
(22.0%) 

29 
(49.2%) 

10 
(16.9%)  - - 

LSKàLGR - - 1 (2.9%)  9 
(26.5%) 

11 
(32.4%) 

8 
(23.5%) 

5 
(14.7%)  - - 

USK - - -  - 5 
(17.2%) 

22 
(75.9%) 2 (6.9%)  - - 

USKàLGR - - -  5 
(15.2%) - 11 

(33.3%) 
17 

(51.5%)  - - 

LFH - - -  - 18 
(69.2%) 

5 
(19.2%) 

3 
(11.5%)  - - 

NPTH - 1 (3.2%) -  16 
(51.6%) 

13 
(41.9%) - 1 (3.2%)  - - 

Unknown 1 
(25.0%) - -  - 2 

(50.0%) - 1 
(25.0%)  - - 

UnknownàLGR 3 (8.8%) 2 (5.9%) 9 
(26.5%)  6 

(17.6% 
8 

(23.5%) 2 (5.9%) 4 
(11.8%)  - - 

GR - - -  - - - -  1 (4.0%) 24 
(96.0%) 
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Table 3 - Results of two-level clustering of known-origin juvenile fish using multivariate DTW distance. Fish were first 608 
clustered by the mean 87Sr/86Sr of the entire transect using k-means, resulting in three broad clusters corresponding to the river of 609 
origin (Clearwater River, Snake River, and Grande Ronde River). These clusters were sub-clustered using hierarchical clustering and 610 
multivariate dynamic time warping distance of 87Sr/86Sr, Sr/Ca, Ba/Ca, and Mn/Ca signatures on the transect across each otolith.  611 
Sample size in each group is shown, with the percentage of each known-origin group shown in parentheses.  612 
 613 

 Clusters of Transect Mean 
 Clearwater R. Snake R.  Grande Ronde R. 
DTW sub-cluster 1 2 3 4  1 2 3 4 5 6   1 2 

CW 1 
(1.0%) 

20 
(19.8%) 

15 
(14.9%) 

65 
(64.4%)  

- 
- - - - -  - - - 

LSK - - - -  
38 

(64.4
%) 

- - 2 
(3.4%) 

1 
(1.7%) 

18 
(30.5%)  - - - 

LSKàLGR - - - 1  
(2.9%)  

10 
(29.4
%) 

- - 15 
(44.1%) 

4 
11.8%) 

4 
(11.8%)  - - - 

USK - - - -  
24 

(82.8
%) 

- - 5 
(17.2%) 

- - 
 - - - 

USKàLGR - - - -  
6 

(18.2
%) 

- - 2 
(6.1%) 

22 
(66.7%) 

3 
(9.1%)  - - - 

LFH - - - -   26 
(100%) 

 - - -  - - - 

NPTH - - 1  
(3.2%) -   1 

(3.2%) 
24 

(77.4%) 
2 

(6.5%) 
- 3 

(9.7%)  - - - 

Unknown - - - 1 
(35.%)   - - 1 

(25.0%) 
1 

(25.0%) 
1 

(25.0%)  - - - 

UnknownàLGR 12 
(35.3%) - - 2 

(5.9%)  1 
(2.9%) 

- - 10 
(29.4%) 

6 
17.6%) 

3 
(8.8%)  - - - 

GR - - - -   - - - - -  15 
(60.0%) 

1 
(4%) 

9 
(36.0%) 
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Figures 614 

 615 

 616 

Figure 1 – Two otolith 87Sr/86Sr transects of two fish caught in the LGR reach of the 617 
Snake River are shown. Dynamic Time Warping computes the amount of warping on the 618 
temporal (x) axis needed to optimally align two series (A). Dotted grey lines show matching 619 
points along these series computed by DTW (a subsample of matching points is shown and 620 
transects are offset by 0.004 to improve clarity). The optimal warping path (B) is shown between 621 
the two time series. Transects are re-interpolated to 200 cells but were not z-normalized prior to 622 
comparison.  623 
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 625 

Figure 2 – Otoliths (A) are laser ablated on a path 90° from the sulcus (a). This analysis 626 
creates a temporally structured dataset for each fish, representing the chemistry of the rivers they 627 
inhabited throughout their life. These otolith chemical transects (B) are represented with microns 628 
from the core of the otolith on the temporal (x) axis. Movement timing, growth and location 629 
combine to form the shape of the 87Sr/86Sr curve as a fish moves through different habitats. 630 
Otolith 87Sr/86Sr transects for to hypothetical fish inhabiting the same two habitats, habitats 1 and 631 
3, are shown (solid and heavy dashed black lines). The otolith transects for these fish which 632 
experienced the same habitats are phase-shifted on the temporal axis, a condition which is not 633 
controlled in Euclidean distance time series matching. the flexible temporal dimension in the 634 
DTW method allows for matching these transects while distinguishing other life-history shapes 635 
(fine dashed black line). The global marine 87Sr/86Sr signature is shown (b) for reference.  636 
 637 
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 638 

Figure 3 – Snake River fall Chinook salmon inhabit the Snake River (a) in the US States 639 
of Idaho, Washington and Oregon. The extent of spawning for known origin fish in our study (b) 640 
is highlighted. The location of the two hatcheries in the basin are noted with colored dots. The 641 
Tucannon, Grande Ronde, and Salmon Rivers were not sampled for juveniles and produce a very 642 
small percentage of the wild fish in the basin. 643 
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 34 

 Figure 4 – Univariate hierarchical DTW sub-clustering of juvenile fish 87Sr/86Sr transects are shown. Panels A through C 1 
represent the sub-clustering for each cluster based on overall transect mean. Dashed lines show the height the dendrogram was cut to 2 
determine the cluster solution. Transects are colored by the known location of the fish. Some fish were captured in their natal location, 3 
released, and recaptured downstream in LGR. The blue horizontal line represents the global marine value of 87Sr/86Sr (0.70918) for 4 
reference.  5 
 6 
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 36 

 Figure 5 – Multivariate, hierarchical DTW sub-clustering of juvenile fish using 87Sr/86Sr, Sr/Ca, Ba/Ca, and Mn/Ca transects 1 
are shown. Panels A through C represent the sub-clustering for each cluster based on overall transect mean. Dashed lines show the 2 
location the dendrogram was cut to determine the cluster solution. Transects are colored by the known location of the fish. Some fish 3 
were captured in their natal location, released, and recaptured downstream in LGR. Small panels below each cluster show the z-4 
normalized centroid for each trace-element in each cluster. The blue horizontal line represents the global marine value of 87Sr/86Sr 5 
(0.70918) for reference.  6 
 7 
 8 

 9 
  10 
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 1 

Figure 6 – Multivariate, hierarchical DTW clustering of juvenile fish in the confounded USK/LSK group from the discriminate 2 
function are shown. Clustering was performed on 87Sr/86Sr, Sr/Ca, Ba/Ca, and Mn/Ca transects. Panel A shows the clustering of fish in 3 
the discriminate function training set. The proportion of fish in each training-set cluster is shown in Panel B, with the number of fish 4 
in each cluster shown within the colored region of the plot. Panel C shows the clustering of fish in the test set. The proportion of fish 5 
in each test-set cluster is shown in Panel B, with the number of fish in each cluster shown within the colored region of the plot. Fish 6 
transects are colored by their location of capture. Some fish were captured, released, and subsequently re-captured downstream in the 7 
LGR. Colored rectangles show the range of water samples collected over a longterm study of the Snake River spawning areas (Hegg 8 
et al. 2013a, 2018). The blue horizontal line represents the global marine value of 87Sr/86Sr (0.70918) for reference.  9 
 10 
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